Knowledge and understanding are prerequisites for the effective implementation of any
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car if
you do not understand how it works.

This is particularly true when using computers to solve engineering problems. Al-
though they have great potential utility, computers are practically useless without a funda-
mental understanding of how engineering systems work.

This understanding is initially gained by empirical means—that is, by observation and
experiment. However, while such empirically derived information is essential, it is only
half the story. Over years and years of observation and experiment, engineers and scientists
have noticed that certain aspects of their empirical studies occur repeatedly. Such general
behavior can then be expressed as fundamental laws that essentially embody the cumula-
tive wisdom of past experience. Thus, most engineering problem solving employs the two-
pronged approach of empiricism and theoretical analysis (Fig. 1.1).

It must be stressed that the two prongs are closely coupled. As new measurements are
taken, the generalizations may be modified or new ones developed. Similarly, the general-
1zations can have a strong influence on the experiments and observations. In particular,
generalizations can serve as organizing principles that can be employed to synthesize ob-
servations and experimental results into a coherent and comprehensive framework from
which conclusions can be drawn. From an engineering problem-solving perspective, such
a framework is most useful when it is expressed in the form of a mathematical model.

The primary objective of this chapter is to introduce you to mathematical modeling
and its role in engineering problem solving. We will also illustrate how numerical methods
figure in the process.

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, 1t can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that usually reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon the system.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic re-
lationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F'=ma (1.2)

where F = net force acting on the body (N, or kg m/s”), m = mass of the object (kg), and
a = its acceleration (m/s?).



