Knowledge and understanding are prerequisites for the effective implementation of any tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car if you do not understand how it works. This is particularly true when using computers to solve engineering problems. Although they have great potential utility, computers are practically useless without a fundamental understanding of how engineering systems work. This understanding is initially gained by empirical means—that is, by observation and experiment. However, while such empirically derived information is essential, it is only half the story. Over years and years of observation and experiment, engineers and scientists have noticed that certain aspects of their empirical studies occur repeatedly. Such general behavior can then be expressed as fundamental laws that essentially embody the cumulative wisdom of past experience. Thus, most engineering problem solving employs the two-pronged approach of empiricism and theoretical analysis (Fig. 1.1). It must be stressed that the two prongs are closely coupled. As new measurements are taken, the generalizations may be modified or new ones developed. Similarly, the generalizations can have a strong influence on the experiments and observations. In particular, generalizations can serve as organizing principles that can be employed to synthesize observations and experimental results into a coherent and comprehensive framework from which conclusions can be drawn. From an engineering problem-solving perspective, such a framework is most useful when it is expressed in the form of a mathematical model. The primary objective of this chapter is to introduce you to mathematical modeling and its role in engineering problem solving. We will also illustrate how numerical methods figure in the process. A mathematical model can be broadly defined as a formulation or equation that expresses the essential features of a physical system or process in mathematical terms. In a very general sense, it can be represented as a functional relationship of the form Dependent variable $$= f\left(\begin{array}{c} \text{independent} \\ \text{variables} \end{array}, \text{ parameters, } \begin{array}{c} \text{forcing} \\ \text{functions} \end{array}\right)$$ (1.1) where the *dependent variable* is a characteristic that usually reflects the behavior or state of the system; the *independent variables* are usually dimensions, such as time and space, along which the system's behavior is being determined; the *parameters* are reflective of the system's properties or composition; and the *forcing functions* are external influences acting upon the system. The actual mathematical expression of Eq. (1.1) can range from a simple algebraic relationship to large complicated sets of differential equations. For example, on the basis of his observations, Newton formulated his second law of motion, which states that the time rate of change of momentum of a body is equal to the resultant force acting on it. The mathematical expression, or model, of the second law is the well-known equation $$F = ma ag{1.2}$$ where F = net force acting on the body (N, or kg m/s<sup>2</sup>), m = mass of the object (kg), and a = its acceleration (m/s<sup>2</sup>).